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Blegdamsvej 17, DK-2100 Copenhagen, Denmark 
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Abstract. Kikuchi’s approximation for describing phase transitions in magnetic systems is 
reformulated so as to reduce the number of self-consistent equations to be solved and 
emphasise the analogy with mean field theory. The method is used to calculate the 
threshold for bond percolation by exploiting the analogy with the Potts model. 

1. Introduction 

The simplest closed-form approximation for magnetic systems is mean field theory, in 
which each spin is assumed to lie in an effective field due to its neighbours. A 
subsequent improvement, due to Bethe and Peierls (see e.g. Huang 1963), is to consider 
a pair of sites, rather than a single site, as the basic cluster, treat the interaction between 
the pair exactly and represent the interaction with other spins by an effective field. As 
originally presented, the method treated a central spin and all its neighbours, but 
identical results are obtained with just a single pair (Kikuchi 1951). Kikuchi also 
developed a systematic way of extending this approach to larger basic clusters. 
Choosing, for example, a square as the basic unit one obtains very accurate results for 
the transition temperature, T,, of the spin-; Ising model on square and simple cubic 
lattices. For the face-centred cubic lattice, the choice of a tetrahedron as the basic 
cluster gives excellent results, even predicting the first-order transition in the antifer- 
romagnetic case (Kikuchi and Sat0 1974, Phani et a1 1980). A good review of these 
methods is Burley (1972). 

Kikwhi’s method involves enumerating all possible states of the basic unit which 
have different energies and the deriving self-consistent equations for the corresponding 
probabilities. This is an extremely laborious process for anything more complicated 
than a spin-; Ising model; as a result, his approach has been used exclusively for this 
case, as far as we are aware. We report here a reformulation of Kikuchi’s approach 
which avoids these combinatorial preliminaries and which can therefore be more 
readily applied to other problems. As an illustration we calculate the percolation 
threshold for the bond percolation problem (Essam 1972) by exploiting the analogy 
with the Potts model (Fortuin and Kasteleyn 1972, Baxter 1973). 

We find it convenient to write the probability of a particular cluster configuration in 
terms of an effective cluster Hamiltonian. Self-consistent equations for the interactions 
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of this Hamiltonian are derived for an arbitrary model of classical spins, thus avoiding 
the initial problem of delineating all configurations discussed above. The calculations 
are carried out with a square as the basic cluster for simple cubic lattices of any 
dimensionality, but there is no difficulty in applying the method to other cases. 

This approach also has the advantage of reducing the number of self-consistent 
equations to be solved. For example, with a square cluster, the effective cluster 
Hamiltonian does not include next-nearest-neighbour (NNN), three-spin or four-spin 
couplings if the original Hamiltonian did not have them. Consequently, for the spin-$ 
Ising model with nearest-neighbour (NN) forces, three of Kikuchi’s five equations are 
seen to reduce to trivial identities. The only unknowns are firstly a ‘molecular field’ on 
each site of the cluster, and secondly an interaction between NN pairs of the cluster, 
which is different in general from the NN coupling of the original Hamiltonian. If 
three-spin, four-spin and NNN couplings are present, they have the same value in the 
effective cluster Hamiltonian as in the original Hamiltonian, so they do not introduce 
extra self-consistency equations. We therefore feel that our reformulation is a useful 
simplification and gives some insight into Kikuchi’s method by highlighting its similarity 
to the familiar ‘molecular field’ approach. 

It is also instructive to discuss other closed-form approximations in the framework 
of an effective cluster Hamiltonian. In the Bethe-Peierls method, which treats a pair, 
the interaction between the two spins is the same as in the original Hamiltonian. This is 
intuitively reasonable, since contributions to the NN correlation function in addition to 
the ‘direct’ contribution from the NN bond involve spins in larger clusters, which are not 
included at this level of approximation. The Guggenheim-McGlashan (195 1) 
approach lies between those Gf Bethe-Peierls and Kikuchi, in that it takes a basic cluster 
of more than two spins but assumes, unlike Kikuchi, that the NN cluster interaction is the 
same as in the original Hamiltonian. For a cluster of more than two spins the best 
cluster Hamiltonian, in a variational sense, is Kikuchi’s with its modified NN coupling. It 
is not therefore surprising that Kikuchi’s theory leads to the most accurate estimates 
for T,. 

In Q 2 we derive an expression for the free energy of an arbitrary classical spin model 
on a &dimensional simple cubic lattice with a square as the basic unit. This is then 
minimised in Q 3 to give self-consistent equations for parameters of the cluster Hamil- 
tonian, while 4 4 applies the method to calculate the bond percolation threshold. Our 
results are summarised in 4 5. 

2. The free energy 

Assume that there is a classical spin at each lattice site which can be in one of M states, 
specified by a Latin suffix. One can construct a complete set of M operators 0“ whose 
value in state i is given by 0; and which satisfy the orthogonality condition 

where A, is an unimportant normalisation constant. One of the operators, with a = I, is 
the identity for which Q f  = 1 so all the other operators are traceless, i.e. 

coq=o 
i 

(a  f. I ) .  

For example the spin-1 king model would involve the three operators 1, S and 3s’-2. 
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Consider the Kikuchi approximation with a square cluster for a simple cubic lattice 
of arbitrary dimensionality, d, and coordination number z (= 2 d ) .  Denote by Wijkl the 
probability that the sites around the square are in states i, j ,  k and 1. We shall neglect 
here the possibility of complicated ordered structures, although they can be treated in 
our approach, so each site and each bond on the square is equivalent. Therefore Wijkl is 
invariant under cyclic permutation of the indices. Similarly denote by y i j  the probability 
that an NN pair are in states i and j and by Pi the probability that a single site is in state i, 
where clearly 

Pi = E yij = 1 Y E , .  ( 3 b )  
I I 

For the moment neglect possible NNN, three-spin and four-spin interactions, which 
will be added later. The average energy per site can therefore be written as 

U z 
N i  2 i,j 

- = UjPj + - E ujjyjj 

where ui and uij are single-site and NN pair energies. These are expressed more 
conventionally in terms of the operators 0 7 ,  'fields' h" and 'interactions' J"O as 

where 1 and I '  denote a pair of NN sites and the prime on the summation indicates that 
the identity operator, (Y = I, is not included. Interactions which cannot be fitted into the 
basic cluster have to be decoupled, just as in mean field theory, e.g. a long-range 
two-spin interaction Cij  would, on averaging, become G,PiPj. We shall not, however, 
include such interactions here. 

The expression for the entropy is a little more complicated. In mean field theory it is 
given by 

where N is the number of lattice points and kB is Boltzmann's constant. Within the pair 
(Bethe-Peierls) approximation there is a contribution X i , j  yii In y i j  for each of the N z / 2  
pairs, but there is a correction to this because different bonds share the same site. In 
fact, each site is counted z times in the sum over bonds, so it is necessary to subtract off 
( z  - 1) times the single-site contribution 

It is trivial to check that equation (7) leads to the correct expression when there is no 
correlation between sites. One procedes in a similar way to evaluate the entropy with'a 
square cluster. There are z ( z  - 2) /8  squares per site and each bond is counted ( z  - 2) 
times in the sum over squares, so one must subtract ( z  - 3) times the pair contribution, 
equation (7). This has still counted each site ( - z 2 + 4 z ) / 2  times, so in addition one has 
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to add ( ~ ~ - 4 2  + 2)/2 times the right-hand side of equation (6). Putting all this together 
we have 

Further comments on the derivation of the entropy can be found in Kikuchi (1951) and 
Hijmans and de Boer (1955). The free energy per site is obtained by combining 
equations (4) and (8) in the usual way, and represents the main result of this section. 

3. Self-consistency equations 

The free energy obtained from equations (4) and (8) is minimised with respect to the 
wijk j ,  bearing in mind that the pair and single-site probabilities are related to the w’s by 
equation (3) and that here is an overall constraint 

which is readily handled by a Lagrange multiplier. As shown in the Appendix, this leads 
to the condition 

$z(u,j + u,k + ukl  f U / , )  + $ ( U ,  + U ,  + u k  + U() 
+ kgT[kZ ( 2  - 2 )  hl W , , k l -  i.2 ( 2  - 3)(ln y l J  + In Y , k  + 1Il Y k i  + In yi,) 

+k(t2-42 +2)(1n P, +ln P, +In p k  +In P , ) ] - A  = o (10) 

where A is the Lagrange multiplier. Since every term in (10) apart from In W,,kl involves 
only one or two sites, it follows that In w, ,k l  can also be expressed as a sum of one- and 
two-site terms. It is therefore useful to define a cluster Hamiltonian, H4,  such that 

w = (1/ZJ exp(-PH4) (11) 

where Z4 is the partition function of the cluster and p = ( k B T ) - ’ .  For clarity Latin 
subscripts will be omitted in equations like (11). H4 is then expressed as 

+UPk + M : i  4- U ; f  + U f  + U :  +U: + M f  (12) 

where the index ‘4’ denotes an interaction for the square cluster and, analogously to 
equation ( 5 ) ,  one can write 

Similarly one may define 

)’ = ( 1 / Z 2 )  exp(-” (14a) 

(146) 

P = U/Zd exp(-PHd, (14c) 

2 2 2  H Z = ~ i j + u j  + ~ j ,  

Hi = U!, ( 1 4 4  

and U ; ,  U ;  and U,! are related to interaction parameters JgP, h2a and hP by expressions 
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analogous to equation (13). Hz can be obtained from H4 by performing a partial trace 
over a nearest-neighbour pair, i.e. 

and H1 is obtained from H4 in a similar way by tracing over three sites. 

$ z [ u , - ( z - ~ ) u ~ + ( z - ~ ) u ~ + ~  perms ( i j + j k + k l + l i ) ]  

Equation (10) now becomes 

2 1 2  
+;[U, -:z(z -2 )~ : '  + Z ( Z  - 3 ) ~ ~  - F ( Z  -42 + 2 ) ~ :  

+ 3 perms ( i  + j + k + l ) ] +  k g T [ - $ z ( z  - 2) In Z4 

+ $2 ( z  - 3) In Z2 - $(z2 - 42 + 2) In 211 - A = 0. (16) 

Next sum equation (16) over all i, j ,  k ,  1. Since all operators are traceless, most terms 
vanish and one is left with 

-PA =$Z(Z-~~I~Z~-~Z(Z-~)I~Z~+~(Z~-~Z+~)I~Z~. (17) 

U ,  - ( Z  - 2 ) ~ :  + (Z - 3 ) ~ :  = 0 (18) 

U , - ~ z ( Z - 2 ) u f + z ( z - 3 ) u ~ - ~ ( z 2 - 4 z + 2 ) u , l  = o  (19) 

Summing equation (16) over all k ,  1 leads to 

for all pairs ( i ,  j ) ,  while summing over j ,  k and 1 gives 

for all i. Equations ( 5 ) ,  (8) and (16)-(19) imply that A is the free energy per site. 
Expressing U,, in terms of the 'fields' h" through equation ( 5 ) ,  and similarly for U:, U? 
and U f , one has 

C ' [ ~ @ - $ Z ( Z  - 2 ) h , P + 2 ( ~ - 3 ) h ! - $ ( ~ ~ - 4 ~ + 2 ) h f ] O f = O .  (20) 

h" = $2 ( 2  - 2)h: - Z ( Z  - 3)hg + $ ( Z 2 - 4 Z  + 2)h: 

JaP = ( Z  - 2)J4"@ - ( Z  - 3)J;'. 

P 

Multiplying (20) by OP, summing on i and using equation (1) gives 

(21) 

for all a. Similarly equation (19) leads to 

(22) 

Equations (21) and (22) are the self-consistent equations for the parameters in the 
cluster Hamiltonian and are the main results of this section. They look straightforward 
because each equation only refers to a single type of interaction. (This is a consequence 
of choosing orthogonal operators O".) The variables are not independent, however, 
because carrying out the partial traces to obtain the pair and single-site couplings from 
the interactions on the square, one finds that a particular interaction of a smaller cluster 
depends on all the interactions of the larger one. We emphasise that future applications 
of the method can start with equations (21) and (22), thus avoiding the combinatorial 
arguments which led up to them. 

Carrying out the same manipulations for a cluster of two sites, with the entropy 
given by equation (7), one finds 

J"@ = J;P, h" = Z h g  - (Z - l ) h y ,  
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so the pair interactions are unchanged in the Bethe-Peierls approximation, as 
mentioned in the Introduction. The expression for the entropy in the Guggenheim- 
McGlashan (195 1) approximation does not involve the pair probabilities yi,, and again 
the two-site interactions in the cluster are the same as those in the original Hamiltonian. 
This does not represent the best cluster Hamiltonian if the cluster is larger than a pair. 

It is also straightforward to add NNN two-spin terms as well as three-spin and 
four-spin interactions to the energy and carry out the above manipulations. One finds 
that their values in the cluster Hamiltonian are the same as in the original Hamiltonian, 
essentially because corrections to the F. w In w term in the entropy arise from clusters 
(NN pair and single-site) into which these interactions do not fit. 

For a spin-; Ising model there is only a single variable, S,  so only a single field term 
hS and a single NN interaction J S ( l ) S ( l ' )  can be constructed, and consequently there are 
just two self-consistency equations to be solved. In Kikuchi's work there are five, but 
we now see that, representing the probabilities in terms of the cluster Hamiltonian, 
three of them become trivial and correspond simply to the vaishing of the NNN two-spin, 
the three-spin and the four-spin cluster interactions. 

4. Application to the bond percolation problem 

It has been shown (Fortuin and Kasteleyn 1972, Baxter 1973) that the bond percolation 
problem corresponds to the limit of the s-state Potts model for s -+ 1. In this model the 
spin on site I can be in one of s states specified by an integer ni (n l=  1, 2, . . . , s). The 
interaction between an NN pair depends on whether or not the spins are in the same 
state, so the Hamiltonian is given by 

where the sum includes each NN pair once. In the ordered phase it is necessary to 
include symmetry breaking terms which single out a particular state, e.g. l t i  = 1. This 
means that a single-site term of the form h4(SnI1 - l / s )  must be included in the cluster 
Hamiltonian, but one can also have a two-spin term L4(Sn,1 - l / s )  - l / s )  which is 
allowed by the reduced symmetry. The cluster Hamiltonian for the square is therefore 
given by 

In the bond percolation problem one must take the limit s + 1 and the probability, p ,  of 
a bond being occupied is related to J by 

p = 1 -e-PJ (25) 

(Fortuin and Kasteleyn 1972). 
Above the critical temperature, which corresponds to p less than the percolation 

threshold p c ,  the symmetry is not broken so one can set L4 = h4 = 0. One can relate J 2  to 
J 4  by 

(26) J 2  = J4 + 6J 

where the factor of J 4  is due to the direct coupling between an NN pair of the square and 
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SJ is the contribution due to tracing out the other two sites. Equation (22)  consequently 
becomes 

J = J 4 - ( z  - 3 )  SJ (27)  
and one can show that SJ is related to J4 by the equation 

( 3 1 
exp(K S,,,,,.) = -(eK + s - 1 )  + (eK - 1 )  s,,,,,. - - 

S 

as well as 

1 ; (s,,,,. - L) S (Sn,,,,.. - ;) = &,,,.. - - S’ 

so that 

For s + 1, equation (28)  becomes 

(29)  3 Sp =p4 

where p4 is related to J4 etc as p is related to J in equation (25) .  From equations (25) ,  
(27)  and (29)  one readily finds that 

(30)  
In this paper we shall restrict ourselves to calculating p c ,  which occurs when the 

symmetry breaking terms L4 and h4 tend to zero. It is therefore only necessary to 
investigate equations (21)  and (22)  to first order in L4 and h4. Since these terms break 
the symmetry of the high-temperature phase, they can only induce a second-order 
change in p4, which can be neglected. Consequently equation (30)  may be used in 
estimating p c ,  as well as for determining the behaviour for p < p c .  

3 2-3 1 - p  = (1 -P4)/(1 - P 4 )  . 

It is convenient to write, analogously to equation (26) ,  

L2=L4+SL, h 2 =  h4+Sh2, h 1  = h2+ Shl,  (31)  

O = L 4 - ( z - 3 ) S L ,  ( 3 2 ~ )  

O = h 4 - z ( z - 3 )  8hz+:(Z2-42+2) Shl. (32b)  

so equations (21)  and (22)  are equivalent to 

After some algebra we find that 
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6hl =p4(2+2p4+2p!  - 3 p : ) h 4 - 2 p 4 ( 1 + 2 p 4 + 3 p 4 2 ) 3 p i ) L 4 .  ( 3 5 )  

The percolation threshold occurs when the determinant of the coefficients of L4 and h 4  
in equations (32a ,b )  vanishes. This gives p 4  at criticality and p c  is then obtained directly 
from equation ( 3 0 ) .  Results for d = 2 to 6 are summarised in tahle 1. They represent a 
substantial improvement over Bethe-Peierls, although it is perhaps a little disappoin- 
ting that the two-dimensional value does not approach closer to the exact value of $, 

Table 1. Results for the bond percolation problem for ‘simple cubic’ lattices of dimen- 
sionality d. In the Bethe-Peierls approximation p c =  ( z  - (whr re  z = 2 4 .  The results 
for the Kikuchi approximation are with a square as the basic cluster and are obtained from 
equations (30) and (32)-(35) of the text. In the last column the references are: ’ exact result 
from Sykes and Essam (1964b); ’estimate from series expansions from Sykes and Essam 
(1964a). 

d p c  (Bethe-Peierls) p c  (Kikuchi) p c  (other theories) 

2 (square) 0.3333 0.4355 0.5’ 
3 0.2 0.2358 0.247‘ 
4 0.1429 0.1528 - 
5 0,1111 0.1154 - 
6 0.0909 0.0931 - 

5. Conclusions 

We have shown how Kikuchi’s method can be reformulated in a way which reduces the 
number of equations to be solved and which brings out more explicitly the analogy with 
mean field theory. For a square as the basic cluster our principal results are equations 
(21) and ( 2 2 ) ,  but there is no difficulty in applying the ideas to other clusters. This is 
straightforward once the coefficients in the entropy expression have been worked out 
(i.e. the coefficients of C w In w ,  C y In y etc). We have illustrated the method by 
calculating the bond percolation probability for simple cubic lattices of dimensionality 
between two and six. 

Appendix 1 

Minimising the free energy given by equaiiuris (4) and (8) is complicated slightly by the 
fact that W,,kl is invariant under cyclic permutation of its indices, and this has already 
been used in obtaining these equations. The minimisation is more straightforward if we 
assume initially that the sites and bonds are inequivalent so each w,,kl is distinct. The 
equivalence of the sites and of the bonds is then imposed after minimisation. 

Denoting the four bonds by a, b, c, d and the sites by A, B, C and D, where bond a 
lies between sites A and B (see figure l), the relationship between the y’s, P’s and w’s is 
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Figure 1. Convention for labelling the bonds and sites on a square. If the spins on  sites A,  B, 
C and D are in states i, j ,  k and l respectively the probability is w,,kl. For the pair 
probabilities y z  is the probability that the spin on site A is in state i, that on  site B is in state j ,  
and similarly by cyclic permutation for bonds h, c and d. 

In this more general case the free energy is given by 

1 
f kgT[$z (Z - 2) W,,kl In W , , k l -  g.2 ( 2  - 3) 

x ( y i  in y t  + y p k  In y;k + yck, In yckl+ y;I In y;1)+S(z2-4z  +2)  

x(pP ln P P  +P,” In P,” +P: In P E  +PP In PPI]). (‘42) 

One can now minimise with respect to the w y k l ,  bearing in mind (i) that the y ’ s  and 
P’s are related to the w’s through equation (Al),  and (ii) that there is an overall 
constraint Z , , , , k l  w,,kl  = 1. The second point is easily handled with a Lagrange multiplier, 
and the first is also straightforward because, now that the equivalence between sites and 
bonds has been broken, each W,lkl appears at most once in the expression for the y ’ s  and 
P’s. It is then trivial to obtain equation (10) of the text, where A is the Lagrange 
multiplier (apart from an unimportant additive constant of kBT(z  -2)(2 -4)/8). 
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